Category
即分类,Objective-C
中的分类的可以给目标类
增加一些类方法、实例方法、还有遵守更多协议(protocol
), 分类如果有目标类方法的实现,会覆盖目标类
的方法.
Category 的使用
下面定义一个AYPerson
类,它是分类的目标类
@interface AYPerson : NSObject
@property(nonatomic, assign) NSInteger age;
@property(nonatomic, strong) NSString *name;
+ (void)classPerson;
- (void)thePerson;
@end
@implementation AYPerson
+ (void)classPerson
{
NSLog(@"%@-%@", self, NSStringFromSelector(_cmd));
}
- (void)thePerson
{
NSLog(@"%@-%@", self, NSStringFromSelector(_cmd));
}
@end
再定义一个分类AYPerson (Run)
@interface AYPerson (Run)<NSCopying, NSCoding>
+ (void)cateRun;
- (void)run;
- (void)runrun;
@end
@implementation AYPerson (Run)
+(void)cateRun
{
NSLog(@"%@-%@", self, NSStringFromSelector(_cmd));
}
- (void)run
{
NSLog(@"%@-%@", self, NSStringFromSelector(_cmd));
}
- (void)runrun
{
NSLog(@"%@-%@", self, NSStringFromSelector(_cmd));
}
@end
使用的时候导入分类头文件 #import "AYPerson+Run.h"
AYPerson *p = [[AYPerson alloc] init];
[p thePerson];
[p run];
[p runrun];
[AYPerson classPerson];
[AYPerson cateRun];
/**
<AYPerson: 0x100544010>-thePerson
<AYPerson: 0x100544010>-run
<AYPerson: 0x100544010>-runrun
AYPerson-classPerson
AYPerson-cateRun
*/
分类的方法会合并到目标类的方法中,可以跟调用目标类方法一样调用
Category 的底层结构
可以使用如下指令把object-c
的 .m
文件编译出c++
代码,用来窥探category
的实现方法
xcrun -sdk iphoneos clang -arch arm64 -rewrite-objc AYPerson+Run.m
关于xcrun
的更多使用可以使用xcrun --help
查看
下面是编译好之后的 AYPerson+Run.cpp
的部分关键代码
// 类结构体
struct _class_t {
struct _class_t *isa;
struct _class_t *superclass;
void *cache;
void *vtable;
struct _class_ro_t *ro;
};
// 分类结构体
struct _category_t {
const char *name; //目标类的名字
struct _class_t *cls; //指向目标类的指针
const struct _method_list_t *instance_methods; //实例方法列表
const struct _method_list_t *class_methods; //类方法列表
const struct _protocol_list_t *protocols; //遵守的协议列表
const struct _prop_list_t *properties; //属性列表,没有使用
};
创建了 _category_t
结构体, 类的关联使用独立函数OBJC_CATEGORY_SETUP_$_AYPerson_$_Run
,说明关联类是异步操作.
static struct _category_t _OBJC_$_CATEGORY_AYPerson_$_Run __attribute__ ((used, section ("__DATA,__objc_const"))) =
{
"AYPerson",
0, // &OBJC_CLASS_$_AYPerson,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_INSTANCE_METHODS_AYPerson_$_Run,
(const struct _method_list_t *)&_OBJC_$_CATEGORY_CLASS_METHODS_AYPerson_$_Run,
(const struct _protocol_list_t *)&_OBJC_CATEGORY_PROTOCOLS_$_AYPerson_$_Run,
0,
};
static void OBJC_CATEGORY_SETUP_$_AYPerson_$_Run(void ) {
_OBJC_$_CATEGORY_AYPerson_$_Run.cls = &OBJC_CLASS_$_AYPerson;
}
#pragma section(".objc_inithooks$B", long, read, write)
__declspec(allocate(".objc_inithooks$B")) static void *OBJC_CATEGORY_SETUP[] = {
(void *)&OBJC_CATEGORY_SETUP_$_AYPerson_$_Run,
};
objc 源码分析category
的调用过程
objc-os.mm
/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
程序启动加载objc初始化, 注册模块 _dyld_objc_notify_register
, map_images
/***********************************************************************
* map_images
* Process the given images which are being mapped in by dyld.
* Calls ABI-agnostic code after taking ABI-specific locks.
*
* Locking: write-locks runtimeLock
**********************************************************************/
void
map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
/***********************************************************************
* map_images_nolock
* Process the given images which are being mapped in by dyld.
* All class registration and fixups are performed (or deferred pending
* discovery of missing superclasses etc), and +load methods are called.
*
* info[] is in bottom-up order i.e. libobjc will be earlier in the
* array than any library that links to libobjc.
*
* Locking: loadMethodLock(old) or runtimeLock(new) acquired by map_images.
**********************************************************************/
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
... 搜索所有类信息
if (hCount > 0) {
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
...
}
_read_images
读取模块
/***********************************************************************
* _read_images
* Perform initial processing of the headers in the linked
* list beginning with headerList.
*
* Called by: map_images_nolock
*
* Locking: runtimeLock acquired by map_images
**********************************************************************/
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
header_info *hi;
uint32_t hIndex;
size_t count;
size_t i;
Class *resolvedFutureClasses = nil;
size_t resolvedFutureClassCount = 0;
static bool doneOnce;
TimeLogger ts(PrintImageTimes);
runtimeLock.assertLocked();
#define EACH_HEADER \
hIndex = 0; \
hIndex < hCount && (hi = hList[hIndex]); \
hIndex++
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
...
ts.log("IMAGE TIMES: discover classes");
// Fix up remapped classes
// Class list and nonlazy class list remain unremapped.
// Class refs and super refs are remapped for message dispatching.
...
ts.log("IMAGE TIMES: remap classes");
// Fix up @selector references
...
ts.log("IMAGE TIMES: fix up selector references");
// Discover protocols. Fix up protocol refs.
...
ts.log("IMAGE TIMES: discover protocols");
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
...
ts.log("IMAGE TIMES: fix up @protocol references");
// Realize non-lazy classes (for +load methods and static instances)
...
ts.log("IMAGE TIMES: realize non-lazy classes");
// Realize newly-resolved future classes, in case CF manipulates them
...
ts.log("IMAGE TIMES: realize future classes");
// Discover categories. 处理加载到的分类
for (EACH_HEADER) {
category_t **catlist =
_getObjc2CategoryList(hi, &count);
// 获取分类列表
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
for (i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
// 寻找分类的目标类,没有找到就跳过
if (!cls) {
// Category's target class is missing (probably weak-linked).
// Disavow any knowledge of this category.
catlist[i] = nil;
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING category \?\?\?(%s) %p with "
"missing weak-linked target class",
cat->name, cat);
}
continue;
}
// Process this category.
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
bool classExists = NO;
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
addUnattachedCategoryForClass(cat, cls, hi);
if (cls->isRealized()) {
remethodizeClass(cls);
classExists = YES;
}
if (PrintConnecting) {
_objc_inform("CLASS: found category -%s(%s) %s",
cls->nameForLogging(), cat->name,
classExists ? "on existing class" : "");
}
}
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
addUnattachedCategoryForClass(cat, cls->ISA(), hi);
if (cls->ISA()->isRealized()) {
remethodizeClass(cls->ISA());
}
if (PrintConnecting) {
_objc_inform("CLASS: found category +%s(%s)",
cls->nameForLogging(), cat->name);
}
}
}
}
ts.log("IMAGE TIMES: discover categories");
// Category discovery MUST BE LAST to avoid potential races
// when other threads call the new category code before
// this thread finishes its fixups.
// +load handled by prepare_load_methods()
...
// Print preoptimization statistics
...
}
上面读取模块的实现中只保留处理 category
有关的代码,关键是这个操作
// Process this category.
处理分类
// First, register the category with its target class.
首先,注册分类到目标类
// Then, rebuild the class's method lists (etc) if
然后,如歌目标类已经实现,把分类的方法合并到目标类
// the class is realized.
再来看一下remethodizeClass
的实现,这个方法把分类方法合并到目标类中
/***********************************************************************
* remethodizeClass
* Attach outstanding categories to an existing class.
* Fixes up cls's method list, protocol list, and property list.
* Updates method caches for cls and its subclasses.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void remethodizeClass(Class cls)
{
category_list *cats;
bool isMeta;
runtimeLock.assertLocked();
isMeta = cls->isMetaClass();
// Re-methodizing: check for more categories
if ((cats = unattachedCategoriesForClass(cls, false/*not realizing*/))) {
if (PrintConnecting) {
_objc_inform("CLASS: attaching categories to class '%s' %s",
cls->nameForLogging(), isMeta ? "(meta)" : "");
}
attachCategories(cls, cats, true /*flush caches*/);
free(cats);
}
}
attachCategories
把分类列表 和 目标类 合并, 把类列表,属性列表,协议列表添加到目标类中,添加的顺序是 最老的在前面。
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, category_list *cats, bool flush_caches)
{
if (!cats) return;
if (PrintReplacedMethods) printReplacements(cls, cats);
bool isMeta = cls->isMetaClass();
// fixme rearrange to remove these intermediate allocations
method_list_t **mlists = (method_list_t **)
malloc(cats->count * sizeof(*mlists));
property_list_t **proplists = (property_list_t **)
malloc(cats->count * sizeof(*proplists));
protocol_list_t **protolists = (protocol_list_t **)
malloc(cats->count * sizeof(*protolists));
// 重新排序-> 后编译的分类,放在数组前面
// Count backwards through cats to get newest categories first
int mcount = 0;
int propcount = 0;
int protocount = 0;
int i = cats->count;
bool fromBundle = NO;
while (i--) {
auto& entry = cats->list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
mlists[mcount++] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
proplists[propcount++] = proplist;
}
protocol_list_t *protolist = entry.cat->protocols;
if (protolist) {
protolists[protocount++] = protolist;
}
}
// 获取类信息
auto rw = cls->data();
// 预处理列表
prepareMethodLists(cls, mlists, mcount, NO, fromBundle);
// 把方法列表附加到类中
rw->methods.attachLists(mlists, mcount);
free(mlists);
if (flush_caches && mcount > 0) flushCaches(cls);
// 把属性列表附加到类中
rw->properties.attachLists(proplists, propcount);
free(proplists);
// 把协议列表附加到类中
rw->protocols.attachLists(protolists, protocount);
free(protolists);
}
再看一下attachLists
的实现
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
uint32_t oldCount = array()->count;
uint32_t newCount = oldCount + addedCount;
// 重新分类空间,扩容
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
array()->count = newCount;
// 把原来的方法移动到数组后面
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
// 把新的方法添加到数组前面
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];
}
else {
// 1 list -> many lists
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
uint32_t newCount = oldCount + addedCount;
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
if (oldList) array()->lists[addedCount] = oldList;
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
通过查看源码可以知道Category
的加载处理过程
- 通过Runtime加载某个类的所有Category数据
- 把所有Category的方法、属性、协议数据,合并到一个大数组中 (后面参与编译的Category数据,会在数组的前面)
- 将合并后的分类数据(方法、属性、协议),插入到类原来数据的前面
注意:分类方法并非真的覆盖目标类方法,只是分类的方法和目标类方法合并后,分类方法在数组的前面,调用的时候会优先调用数组前面的方法。
Category && Extension
Category
编译的时候会被编译成 struct category_t
结构体,在运行时加载到内存中,跟目标类的方法、协议、属性,进行合并.
Extends
编译的时候就会将方法、协议、属性合并到 class_t
结构体中.
Load 方法
每个类,包括分类都有一个load
方法,程序启动时调用,加载类到内存中。每个类,还有分类都会调用自己的load
方法
查看objc源码,研究load的调用机制
/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
同样是从 _objc_init
方法开始, 这里调用了load_images
/***********************************************************************
* load_images
* Process +load in the given images which are being mapped in by dyld.
*
* Locking: write-locks runtimeLock and loadMethodLock
**********************************************************************/
extern bool hasLoadMethods(const headerType *mhdr);
extern void prepare_load_methods(const headerType *mhdr);
void
load_images(const char *path __unused, const struct mach_header *mh)
{
// Return without taking locks if there are no +load methods here.
if (!hasLoadMethods((const headerType *)mh)) return;
recursive_mutex_locker_t lock(loadMethodLock);
// Discover load methods
{
mutex_locker_t lock2(runtimeLock);
// 搜获所有类、分类的load方法,并添加到一个数组中
prepare_load_methods((const headerType *)mh);
}
// Call +load methods (without runtimeLock - re-entrant)
// 调用load方法
call_load_methods();
}
查看prepare_load_methods
方法实现, 搜获所有类、分类的load方法,并添加到一个数组中
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
runtimeLock.assertLocked();
// 查找 class 的 load 方法,并添加到一个数组
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
for (i = 0; i < count; i++) {
schedule_class_load(remapClass(classlist[i]));
}
// 查找 category 的 load 方法,并添加到一个数组
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
category_t *cat = categorylist[i];
Class cls = remapClass(cat->cls);
if (!cls) continue; // category for ignored weak-linked class
if (cls->isSwiftStable()) {
_objc_fatal("Swift class extensions and categories on Swift "
"classes are not allowed to have +load methods");
}
realizeClassWithoutSwift(cls);
assert(cls->ISA()->isRealized());
add_category_to_loadable_list(cat);
}
}
schedule_class_load
查找class
的load
方法,添加到数组中,如果有父类,先添加父类方法
/***********************************************************************
* prepare_load_methods
* Schedule +load for classes in this image, any un-+load-ed
* superclasses in other images, and any categories in this image.
**********************************************************************/
// Recursively schedule +load for cls and any un-+load-ed superclasses.
// cls must already be connected.
static void schedule_class_load(Class cls)
{
if (!cls) return;
assert(cls->isRealized()); // _read_images should realize
if (cls->data()->flags & RW_LOADED) return;
// Ensure superclass-first ordering
// 递归调用,如果有superclass,会一级一级往上找
schedule_class_load(cls->superclass);
// 查找class,并把load方法添加到数组中
add_class_to_loadable_list(cls);
cls->setInfo(RW_LOADED);
}
add_class_to_loadable_list
查找class
,并把load
方法添加到数组中
typedef void(*load_method_t)(id, SEL);
// 存 class 和 load 方法的结构体
struct loadable_class {
Class cls; // may be nil
IMP method;
};
// List of classes that need +load called (pending superclass +load)
// This list always has superclasses first because of the way it is constructed
static struct loadable_class *loadable_classes = nil;
static int loadable_classes_used = 0;
static int loadable_classes_allocated = 0;
/***********************************************************************
* add_class_to_loadable_list
* Class cls has just become connected. Schedule it for +load if
* it implements a +load method.
**********************************************************************/
void add_class_to_loadable_list(Class cls)
{
IMP method;
loadMethodLock.assertLocked();
method = cls->getLoadMethod();
if (!method) return; // Don't bother if cls has no +load method
if (PrintLoading) {
_objc_inform("LOAD: class '%s' scheduled for +load",
cls->nameForLogging());
}
if (loadable_classes_used == loadable_classes_allocated) {
loadable_classes_allocated = loadable_classes_allocated*2 + 16;
loadable_classes = (struct loadable_class *)
realloc(loadable_classes,
loadable_classes_allocated *
sizeof(struct loadable_class));
}
loadable_classes[loadable_classes_used].cls = cls;
loadable_classes[loadable_classes_used].method = method;
loadable_classes_used++;
}
/***********************************************************************
* objc_class::getLoadMethod
* fixme
* Called only from add_class_to_loadable_list.
* Locking: runtimeLock must be read- or write-locked by the caller.
**********************************************************************/
IMP objc_class::getLoadMethod()
{
runtimeLock.assertLocked();
const method_list_t *mlist;
assert(isRealized());
assert(ISA()->isRealized());
assert(!isMetaClass());
assert(ISA()->isMetaClass());
// 从原始数据中搜索load方法
mlist = ISA()->data()->ro->baseMethods();
if (mlist) {
for (const auto& meth : *mlist) {
const char *name = sel_cname(meth.name);
if (0 == strcmp(name, "load")) {
return meth.imp;
}
}
}
return nil;
}
add_category_to_loadable_list
查找category
,并把load
方法添加到数组中
struct loadable_category {
Category cat; // may be nil
IMP method;
};
// List of categories that need +load called (pending parent class +load)
static struct loadable_category *loadable_categories = nil;
static int loadable_categories_used = 0;
static int loadable_categories_allocated = 0;
/***********************************************************************
* add_category_to_loadable_list
* Category cat's parent class exists and the category has been attached
* to its class. Schedule this category for +load after its parent class
* becomes connected and has its own +load method called.
**********************************************************************/
void add_category_to_loadable_list(Category cat)
{
IMP method;
loadMethodLock.assertLocked();
method = _category_getLoadMethod(cat);
// Don't bother if cat has no +load method
if (!method) return;
if (PrintLoading) {
_objc_inform("LOAD: category '%s(%s)' scheduled for +load",
_category_getClassName(cat), _category_getName(cat));
}
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
/***********************************************************************
* _category_getLoadMethod
* fixme
* Called only from add_category_to_loadable_list
* Locking: runtimeLock must be read- or write-locked by the caller
**********************************************************************/
IMP _category_getLoadMethod(Category cat)
{
runtimeLock.assertLocked();
const method_list_t *mlist;
mlist = cat->classMethods;
if (mlist) {
for (const auto& meth : *mlist) {
const char *name = sel_cname(meth.name);
if (0 == strcmp(name, "load")) {
return meth.imp;
}
}
}
return nil;
}
call_load_methods
方法,内部先调用call_class_loads
,后调用call_category_loads
方法
/***********************************************************************
* call_load_methods
* Call all pending class and category +load methods.
* Class +load methods are called superclass-first.
* Category +load methods are not called until after the parent class's +load.
*
* This method must be RE-ENTRANT, because a +load could trigger
* more image mapping. In addition, the superclass-first ordering
* must be preserved in the face of re-entrant calls. Therefore,
* only the OUTERMOST call of this function will do anything, and
* that call will handle all loadable classes, even those generated
* while it was running.
*
* The sequence below preserves +load ordering in the face of
* image loading during a +load, and make sure that no
* +load method is forgotten because it was added during
* a +load call.
* Sequence:
* 1. Repeatedly call class +loads until there aren't any more
* 2. Call category +loads ONCE.
* 3. Run more +loads if:
* (a) there are more classes to load, OR
* (b) there are some potential category +loads that have
* still never been attempted.
* Category +loads are only run once to ensure "parent class first"
* ordering, even if a category +load triggers a new loadable class
* and a new loadable category attached to that class.
*
* Locking: loadMethodLock must be held by the caller
* All other locks must not be held.
**********************************************************************/
void call_load_methods(void)
{
static bool loading = NO;
bool more_categories;
loadMethodLock.assertLocked();
// Re-entrant calls do nothing; the outermost call will finish the job.
if (loading) return;
loading = YES;
void *pool = objc_autoreleasePoolPush();
do {
// 1. Repeatedly call class +loads until there aren't any more
while (loadable_classes_used > 0) {
call_class_loads();
}
// 2. Call category +loads ONCE
more_categories = call_category_loads();
// 3. Run more +loads if there are classes OR more untried categories
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
call_class_loads
和call_category_loads
方法
typedef void(*load_method_t)(id, SEL);
/***********************************************************************
* call_class_loads
* Call all pending class +load methods.
* If new classes become loadable, +load is NOT called for them.
*
* Called only by call_load_methods().
**********************************************************************/
static void call_class_loads(void)
{
int i;
// Detach current loadable list.
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
if (PrintLoading) {
_objc_inform("LOAD: +[%s load]\n", cls->nameForLogging());
}
(*load_method)(cls, SEL_load);
}
// Destroy the detached list.
if (classes) free(classes);
}
/***********************************************************************
* call_category_loads
* Call some pending category +load methods.
* The parent class of the +load-implementing categories has all of
* its categories attached, in case some are lazily waiting for +initalize.
* Don't call +load unless the parent class is connected.
* If new categories become loadable, +load is NOT called, and they
* are added to the end of the loadable list, and we return TRUE.
* Return FALSE if no new categories became loadable.
*
* Called only by call_load_methods().
**********************************************************************/
static bool call_category_loads(void)
{
int i, shift;
bool new_categories_added = NO;
// Detach current loadable list.
struct loadable_category *cats = loadable_categories;
int used = loadable_categories_used;
int allocated = loadable_categories_allocated;
loadable_categories = nil;
loadable_categories_allocated = 0;
loadable_categories_used = 0;
// Call all +loads for the detached list.
for (i = 0; i < used; i++) {
Category cat = cats[i].cat;
load_method_t load_method = (load_method_t)cats[i].method;
Class cls;
if (!cat) continue;
cls = _category_getClass(cat);
if (cls && cls->isLoadable()) {
if (PrintLoading) {
_objc_inform("LOAD: +[%s(%s) load]\n",
cls->nameForLogging(),
_category_getName(cat));
}
(*load_method)(cls, SEL_load);
cats[i].cat = nil;
}
}
// Compact detached list (order-preserving)
shift = 0;
for (i = 0; i < used; i++) {
if (cats[i].cat) {
cats[i-shift] = cats[i];
} else {
shift++;
}
}
used -= shift;
// Copy any new +load candidates from the new list to the detached list.
new_categories_added = (loadable_categories_used > 0);
for (i = 0; i < loadable_categories_used; i++) {
if (used == allocated) {
allocated = allocated*2 + 16;
cats = (struct loadable_category *)
realloc(cats, allocated *
sizeof(struct loadable_category));
}
cats[used++] = loadable_categories[i];
}
// Destroy the new list.
if (loadable_categories) free(loadable_categories);
// Reattach the (now augmented) detached list.
// But if there's nothing left to load, destroy the list.
if (used) {
loadable_categories = cats;
loadable_categories_used = used;
loadable_categories_allocated = allocated;
} else {
if (cats) free(cats);
loadable_categories = nil;
loadable_categories_used = 0;
loadable_categories_allocated = 0;
}
if (PrintLoading) {
if (loadable_categories_used != 0) {
_objc_inform("LOAD: %d categories still waiting for +load\n",
loadable_categories_used);
}
}
return new_categories_added;
}
总结: +load
方法会在程序启动时调用,仅调用一次,
每个类、分类的+load
都会被调用
调用顺序
- 先调用类的
+load
- 按照编译先后顺序调用(先编译,先调用)
-
调用子类的
+load
之前会先调用父类的+load
- 再调用分类的
+load
- 按照编译先后顺序调用(先编译,先调用)
Initialize 方法
创建一个类AYDog
,并重写它的initialize
方法,打断点可以查看它的调用的栈流程
(lldb) bt
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
* frame #0: 0x0000000100001b87 CategoryLoad`+[AYDog(self=AYDog, _cmd="initialize") initialize] at AYDog+Test1.m:17:5
frame #1: 0x00007fff6e8ce9b5 libobjc.A.dylib`CALLING_SOME_+initialize_METHOD + 17
frame #2: 0x00007fff6e8cf2ec libobjc.A.dylib`initializeNonMetaClass + 638
frame #3: 0x00007fff6e8cf9c1 libobjc.A.dylib`initializeAndMaybeRelock(objc_class*, objc_object*, mutex_tt<false>&, bool) + 214
frame #4: 0x00007fff6e8c141b libobjc.A.dylib`lookUpImpOrForward + 969
frame #5: 0x00007fff6e8c0bd9 libobjc.A.dylib`_objc_msgSend_uncached + 73
frame #6: 0x0000000100001d26 CategoryLoad`main(argc=1, argv=0x00007ffeefbff538) at main.m:34:9
frame #7: 0x00007fff6fc2f2e5 libdyld.dylib`start + 1
frame #8: 0x00007fff6fc2f2e5 libdyld.dylib`start + 1
可以看到调用顺序分别是_objc_msgSend_uncached
, lookUpImpOrForward
, initializeAndMaybeRelock
, initializeNonMetaClass
查看objc
源码进一步分析
_objc_msgSend_uncached
是汇编实现的,在objc-msg-arm64.s
中,跳过不看
在源码中搜索lookUpImpOrForward
的调用,可以看到lookUpImpOrNil
会调用它,
再查找lookUpImpOrNil
,可以看到class_getInstanceMethod
会调用它.
由此可以推测调用 OC
方法时会调用_objc_msgSend_uncached
, 它是objc_msgSend
的派生方法,所以调用objc_msgSend
会调用class_getInstanceMethod
,lookUpImpOrNil
, lookUpImpOrForward
,initializeAndMaybeRelock
, initializeNonMetaClass
, 最后再调用initialize
, 也就是说给OC
发消息时,会调用initialize
方法。
从class_getInstanceMethod
开始,分析源码实现
/***********************************************************************
* class_getInstanceMethod. Return the instance method for the
* specified class and selector.
**********************************************************************/
Method class_getInstanceMethod(Class cls, SEL sel)
{
if (!cls || !sel) return nil;
// This deliberately avoids +initialize because it historically did so.
// This implementation is a bit weird because it's the only place that
// wants a Method instead of an IMP.
#warning fixme build and search caches
// Search method lists, try method resolver, etc.
lookUpImpOrNil(cls, sel, nil,
NO/*initialize*/, NO/*cache*/, YES/*resolver*/);
#warning fixme build and search caches
return _class_getMethod(cls, sel);
}
继续查找方法lookUpImpOrNil
/***********************************************************************
* lookUpImpOrNil.
* Like lookUpImpOrForward, but returns nil instead of _objc_msgForward_impcache
**********************************************************************/
IMP lookUpImpOrNil(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = lookUpImpOrForward(cls, sel, inst, initialize, cache, resolver);
if (imp == _objc_msgForward_impcache) return nil;
else return imp;
}
/***********************************************************************
* lookUpImpOrForward.
* The standard IMP lookup.
* initialize==NO tries to avoid +initialize (but sometimes fails)
* cache==NO skips optimistic unlocked lookup (but uses cache elsewhere)
* Most callers should use initialize==YES and cache==YES.
* inst is an instance of cls or a subclass thereof, or nil if none is known.
* If cls is an un-initialized metaclass then a non-nil inst is faster.
* May return _objc_msgForward_impcache. IMPs destined for external use
* must be converted to _objc_msgForward or _objc_msgForward_stret.
* If you don't want forwarding at all, use lookUpImpOrNil() instead.
**********************************************************************/
IMP lookUpImpOrForward(Class cls, SEL sel, id inst,
bool initialize, bool cache, bool resolver)
{
IMP imp = nil;
bool triedResolver = NO;
runtimeLock.assertUnlocked();
// Optimistic cache lookup
if (cache) {
imp = cache_getImp(cls, sel);
if (imp) return imp;
}
// runtimeLock is held during isRealized and isInitialized checking
// to prevent races against concurrent realization.
// runtimeLock is held during method search to make
// method-lookup + cache-fill atomic with respect to method addition.
// Otherwise, a category could be added but ignored indefinitely because
// the cache was re-filled with the old value after the cache flush on
// behalf of the category.
runtimeLock.lock();
checkIsKnownClass(cls);
if (!cls->isRealized()) {
cls = realizeClassMaybeSwiftAndLeaveLocked(cls, runtimeLock);
// runtimeLock may have been dropped but is now locked again
}
if (initialize && !cls->isInitialized()) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
// runtimeLock may have been dropped but is now locked again
// If sel == initialize, class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
···
runtimeLock.unlock();
return imp;
}
关键是这一段
//如果需要初始化,并且没有初始化过,调用`initializeAndLeaveLocked`
if (initialize && !cls->isInitialized()) {
cls = initializeAndLeaveLocked(cls, inst, runtimeLock);
// runtimeLock may have been dropped but is now locked again
// If sel == initialize, class_initialize will send +initialize and
// then the messenger will send +initialize again after this
// procedure finishes. Of course, if this is not being called
// from the messenger then it won't happen. 2778172
}
查看是否初始化过,getMeta()->data()->flags
,通过flags
来判断
bool isInitialized() {
return getMeta()->data()->flags & RW_INITIALIZED;
}
// Locking: caller must hold runtimeLock; this may drop and re-acquire it
static Class initializeAndLeaveLocked(Class cls, id obj, mutex_t& lock)
{
return initializeAndMaybeRelock(cls, obj, lock, true);
}
/***********************************************************************
* class_initialize. Send the '+initialize' message on demand to any
* uninitialized class. Force initialization of superclasses first.
* inst is an instance of cls, or nil. Non-nil is better for performance.
* Returns the class pointer. If the class was unrealized then
* it may be reallocated.
* Locking:
* runtimeLock must be held by the caller
* This function may drop the lock.
* On exit the lock is re-acquired or dropped as requested by leaveLocked.
**********************************************************************/
static Class initializeAndMaybeRelock(Class cls, id inst,
mutex_t& lock, bool leaveLocked)
{
lock.assertLocked();
assert(cls->isRealized());
if (cls->isInitialized()) {
if (!leaveLocked) lock.unlock();
return cls;
}
// Find the non-meta class for cls, if it is not already one.
// The +initialize message is sent to the non-meta class object.
Class nonmeta = getMaybeUnrealizedNonMetaClass(cls, inst);
// Realize the non-meta class if necessary.
if (nonmeta->isRealized()) {
// nonmeta is cls, which was already realized
// OR nonmeta is distinct, but is already realized
// - nothing else to do
lock.unlock();
} else {
nonmeta = realizeClassMaybeSwiftAndUnlock(nonmeta, lock);
// runtimeLock is now unlocked
// fixme Swift can't relocate the class today,
// but someday it will:
cls = object_getClass(nonmeta);
}
// runtimeLock is now unlocked, for +initialize dispatch
assert(nonmeta->isRealized());
initializeNonMetaClass(nonmeta);
if (leaveLocked) runtimeLock.lock();
return cls;
}
class_initialize
发送+initialize
消息给没有初始化的类,如果有父类,先初始化父类
/***********************************************************************
* class_initialize. Send the '+initialize' message on demand to any
* uninitialized class. Force initialization of superclasses first.
**********************************************************************/
void initializeNonMetaClass(Class cls)
{
assert(!cls->isMetaClass());
Class supercls;
bool reallyInitialize = NO;
// 如果父类没有初始化,先初始化父类
// Make sure super is done initializing BEFORE beginning to initialize cls.
// See note about deadlock above.
supercls = cls->superclass;
if (supercls && !supercls->isInitialized()) {
initializeNonMetaClass(supercls);
}
// 开始初始化,启动线程锁
// Try to atomically set CLS_INITIALIZING.
{
monitor_locker_t lock(classInitLock);
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
// 开始初始化
if (reallyInitialize) {
// We successfully set the CLS_INITIALIZING bit. Initialize the class.
// Record that we're initializing this class so we can message it.
_setThisThreadIsInitializingClass(cls);
... lock 和 打印操作
{
// 调用初始化方法
callInitialize(cls);
if (PrintInitializing) {
_objc_inform("INITIALIZE: thread %p: finished +[%s initialize]",
pthread_self(), cls->nameForLogging());
}
}
...
{
// Done initializing.
lockAndFinishInitializing(cls, supercls);
}
return;
}
else if (cls->isInitializing()) {
... lock 处理
}
else if (cls->isInitialized()) {
// Set CLS_INITIALIZING failed because someone else already
// initialized the class. Continue normally.
// NOTE this check must come AFTER the ISINITIALIZING case.
// Otherwise: Another thread is initializing this class. ISINITIALIZED
// is false. Skip this clause. Then the other thread finishes
// initialization and sets INITIALIZING=no and INITIALIZED=yes.
// Skip the ISINITIALIZING clause. Die horribly.
return;
}
else {
// We shouldn't be here.
_objc_fatal("thread-safe class init in objc runtime is buggy!");
}
}
上面的方法中,如果有父类,先初始化父类,没有父类再初始化当前类,调用callInitialize
来初始化
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
使用objc_msgSend
调用+initialize
方法
总结:+initialize
方法会在类第一次接收到消息时调用
调用顺序:
先调用父类的+initialize
,再调用子类的+initialize
(先初始化父类,再初始化子类,每个类只会初始化1次)
+initialize
和+load
的很大区别是,+initialize
是通过objc_msgSend
进行调用的,所以有以下特点
如果子类没有实现+initialize
,会调用父类的+initialize
(所以父类的+initialize
可能会被调用多次)
如果分类实现了+initialize
,就覆盖类本身的+initialize
调用
reference: apple objc4 源码