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Abstract—Face detection and alignment in unconstrained en-

vironment are challenging due to various poses, illuminations and 

occlusions. Recent studies show that deep learning approaches 

can achieve impressive performance on these two tasks. In this 

paper, we propose a deep cascaded multi-task framework which 

exploits the inherent correlation between them to boost up their 

performance. In particular, our framework adopts a cascaded 

structure with three stages of carefully designed deep convolu-

tional networks that predict face and landmark location in a 

coarse-to-fine manner. In addition, in the learning process, we 

propose a new online hard sample mining strategy that can im-

prove the performance automatically without manual sample 

selection. Our method achieves superior accuracy over the 

state-of-the-art techniques on the challenging FDDB and WIDER 

FACE benchmark for face detection, and AFLW benchmark for 

face alignment, while keeps real time performance.  

 
Index Terms—Face detection, face alignment, cascaded con-

volutional neural network  

 

I. INTRODUCTION 

ACE detection and alignment are essential to many face 

applications, such as face recognition and facial expression 

analysis. However, the large visual variations of faces, such as 

occlusions, large pose variations and extreme lightings, impose 

great challenges for these tasks in real world applications. 

The cascade face detector proposed by Viola and Jones [2] 

utilizes Haar-Like features and AdaBoost to train cascaded 

classifiers, which achieve good performance with real-time 

efficiency. However, quite a few works [1, 3, 4] indicate that 

this detector may degrade significantly in real-world applica-

tions with larger visual variations of human faces even with 

more advanced features and classifiers. Besides the cascade 

structure, [5, 6, 7] introduce deformable part models (DPM) for 

face detection and achieve remarkable performance. However, 

they need high computational expense and may usually require 

expensive annotation in the training stage. Recently, convolu-

tional neural networks (CNNs) achieve remarkable progresses 

in a variety of computer vision tasks, such as image classifica-

tion [9] and face recognition [10]. Inspired by the good per-
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formance of CNNs in computer vision tasks, some of the CNNs 

based face detection approaches have been proposed in recent 

years. Yang et al. [11] train deep convolution neural networks 

for facial attribute recognition to obtain high response in face 

regions which further yield candidate windows of faces. 

However, due to its complex CNN structure, this approach is 

time costly in practice. Li et al. [19] use cascaded CNNs for 

face detection, but it requires bounding box calibration from 

face detection with extra computational expense and ignores 

the inherent correlation between facial landmarks localization 

and bounding box regression. 

Face alignment also attracts extensive interests. Regres-

sion-based methods [12, 13, 16] and template fitting ap-

proaches [14, 15, 7] are two popular categories. Recently, 

Zhang et al. [22] proposed to use facial attribute recognition as 

an auxiliary task to enhance face alignment performance using 

deep convolutional neural network. 

However, most of the available face detection and face 

alignment methods ignore the inherent correlation between 

these two tasks. Though there exist several works attempt to 

jointly solve them, there are still limitations in these works. For 

example, Chen et al. [18] jointly conduct alignment and detec-

tion with random forest using features of pixel value difference. 

But, the handcraft features used limits its performance. Zhang 

et al. [20] use multi-task CNN to improve the accuracy of 

multi-view face detection, but the detection accuracy is limited 

by the initial detection windows produced by a weak face de-

tector. 

On the other hand, in the training process, mining hard 

samples in training is critical to strengthen the power of de-

tector. However, traditional hard sample mining usually per-

forms an offline manner, which significantly increases the 

manual operations. It is desirable to design an online hard 

sample mining method for face detection and alignment, which 

is adaptive to the current training process automatically. 

In this paper, we propose a new framework to integrate these 

two tasks using unified cascaded CNNs by multi-task learning. 

The proposed CNNs consist of three stages. In the first stage, it 

produces candidate windows quickly through a shallow CNN. 

Then, it refines the windows to reject a large number of 

non-faces windows through a more complex CNN. Finally, it 

uses a more powerful CNN to refine the result and output facial 

landmarks positions. Thanks to this multi-task learning 

framework, the performance of the algorithm can be notably 

improved. The major contributions of this paper are summa-

rized as follows: (1) We propose a new cascaded CNNs based 

framework for joint face detection and alignment, and carefully 
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design lightweight CNN architecture for real time performance. 

(2) We propose an effective method to conduct online hard 

sample mining to improve the performance. (3) Extensive ex-

periments are conducted on challenging benchmarks, to show 

the significant performance improvement of the proposed ap-

proach compared to the state-of-the-art techniques in both face 

detection and face alignment tasks. 

II. APPROACH 

In this section, we will describe our approach towards joint 

face detection and alignment. 

A. Overall Framework 

The overall pipeline of our approach is shown in Fig. 1. 

Given an image, we initially resize it to different scales to build 

an image pyramid, which is the input of the following 

three-stage cascaded framework: 

Stage 1: We exploit a fully convolutional network[?], called 

Proposal Network (P-Net), to obtain the candidate windows 

and their bounding box regression vectors in a similar manner 

as [29].  Then we use the estimated bounding box regression 

vectors to calibrate the candidates. After that, we employ 

non-maximum suppression (NMS) to merge highly overlapped 

candidates. 

Stage 2: all candidates are fed to another CNN, called Refine 

Network (R-Net), which further rejects a large number of false 

candidates, performs calibration with bounding box regression, 

and NMS candidate merge. 

Stage 3: This stage is similar to the second stage, but in this 

stage we aim to describe the face in more details. In particular, 

the network will output five facial landmarks’ positions. 

B. CNN Architectures 

In [19], multiple CNNs have been designed for face detec-

tion. However, we noticed its performance might be limited by 

the following facts: (1) Some filters lack diversity of weights 

that may limit them to produce discriminative description. (2) 

Compared to other multi-class objection detection and classi-

fication tasks, face detection is a challenge binary classification 

task, so it may need less numbers of filters but more discrimi-

nation of them. To this end, we reduce the number of filters and 

change the 5×5 filter to a 3×3 filter to reduce the computing 

while increase the depth to get better performance. With these 

improvements, compared to the previous architecture in [19], 

we can get better performance with less runtime (the result is 

shown in Table 1. For fair comparison, we use the same data for 

both methods). Our CNN architectures are showed in Fig. 2. 

C. Training  

We leverage three tasks to train our CNN detectors: 

face/non-face classification, bounding box regression, and 

facial landmark localization. 

1) Face classification: The learning objective is formulated as 

a two-class classification problem. For each sample   , we use 

the cross-entropy loss: 
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where    is the probability produced by the network that indi-

cates a sample being a face. The notation    
           denotes 

the ground-truth label. 

2) Bounding box regression: For each candidate window, we 

predict the offset between it and the nearest ground truth (i.e., 

the bounding boxes’ left top, height, and width). The learning 

objective is formulated as a regression problem, and we employ 

the Euclidean loss for each sample   : 
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where  ̂ 
    regression target obtained from the network and 

  
    is the ground-truth coordinate. There are four coordinates, 

including left top, height and width, and thus   
       . 

3) Facial landmark localization: Similar to the bounding box 

regression task, facial landmark detection is formulated as a 

TABLE I 

COMPARISON OF SPEED AND VALIDATION ACCURACY OF OUR CNNS AND 

PREVIOUS CNNS [19] 

Group CNN 300 Times Forward  Accuracy 

Group1 12-Net [19] 0.038s 94.4% 

Group1 P-Net 0.031s 94.6% 

Group2 24-Net [19] 0.738s 95.1% 

Group2 R-Net 0.458s 95.4% 

Group3 48-Net [19] 3.577s 93.2% 

Group3 O-Net 1.347s 95.4% 

    

 

 
Fig. 1.  Pipeline of our cascaded framework that includes three-stage mul-

ti-task deep convolutional networks. Firstly, candidate windows are produced 

through a fast Proposal Network (P-Net). After that, we refine these candidates 

in the next stage through a Refinement Network (R-Net). In the third stage, 

The Output Network (O-Net) produces final bounding box and facial land-

marks position. 
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regression problem and we minimize the Euclidean loss: 
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                (3)   

 

where  ̂ 
         is the facial landmark’s coordinate obtained 

from the network and   
         is the  ground-truth coordinate. 

There are five facial landmarks, including left eye, right eye, 

nose, left mouth corner, and right mouth corner, and thus 

  
             . 

4) Multi-source training: Since we employ different tasks in 

each CNNs, there are different types of training images in the 

learning process, such as face, non-face and partially aligned 

face. In this case, some of the loss functions (i.e., Eq. (1)-(3) ) 

are not used. For example, for the sample of background region, 

we only compute   
   , and the other two losses are set as 0. 

This can be implemented directly with a sample type indicator. 

Then the overall learning target can be formulated as: 
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where   is the number of training samples.    denotes on the 

task importance. We use                            
     in P-Net and R-Net, while              
                 in O-Net for more accurate facial land-

marks localization.   
 
       is the sample type indicator. In 

this case, it is natural to employ stochastic gradient descent to 

train the CNNs. 

5) Online Hard sample mining: Different from conducting 

traditional hard sample mining after original classifier had been 

trained, we do online hard sample mining in face classification 

task to be adaptive to the training process.  

In particular, in each mini-batch, we sort the loss computed 

in the forward propagation phase from all samples and select 

the top 70% of them as hard samples. Then we only compute 

the gradient from the hard samples in the backward propagation 

phase. That means we ignore the easy samples that are less 

helpful to strengthen the detector while training. Experiments 

show that this strategy yields better performance without 

manual sample selection. Its effectiveness is demonstrated in 

the Section III. 

III. EXPERIMENTS 

In this section, we first evaluate the effectiveness of the 

proposed hard sample mining strategy. Then we compare our 

face detector and alignment against the state-of-the-art methods 

in Face Detection Data Set and Benchmark (FDDB) [25], 

WIDER FACE [24], and Annotated Facial Landmarks in the 

Wild (AFLW) benchmark [8]. FDDB dataset contains the an-

notations for 5,171 faces in a set of 2,845 images. WIDER 

FACE dataset consists of 393,703 labeled face bounding boxes 

in 32,203 images where 50% of them for testing into three 

subsets according to the difficulty of images, 40% for training 

and the remaining for validation. AFLW contains the facial 

landmarks annotations for 24,386 faces and we use the same 

test subset as [22]. Finally, we evaluate the computational ef-

ficiency of our face detector. 

A. Training Data 

Since we jointly perform face detection and alignment, here 

we use four different kinds of data annotation in our training 

process: (i) Negatives: Regions that the Intersec-

tion-over-Union (IoU) ratio less than 0.3 to any ground-truth 

faces; (ii) Positives: IoU above 0.65 to a ground truth face; (iii) 

Part faces: IoU between 0.4 and 0.65 to a ground truth face; and 

(iv) Landmark faces: faces labeled 5 landmarks’ positions. 

Negatives and positives are used for face classification tasks, 

positives and part faces are used for bounding box regression, 

and landmark faces are used for facial landmark localization. 

The training data for each network is described as follows: 

1) P-Net: We randomly crop several patches from WIDER 

FACE [24] to collect positives, negatives and part face. Then, 

we crop faces from CelebA [23] as landmark faces 

2) R-Net: We use first stage of our framework to detect faces 

 
Fig. 2.  The architectures of P-Net, R-Net, and O-Net, where “MP” means max pooling and “Conv” means convolution. The step size in convolution and pooling 

is 1 and 2, respectively. 
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from WIDER FACE [24] to collect positives, negatives and 

part face while landmark faces are detected from CelebA [23]. 

3) O-Net: Similar to R-Net to collect data but we use first two 

stages of our framework to detect faces.  

B. The effectiveness of online hard sample mining  

To evaluate the contribution of the proposed online hard 

sample mining strategy, we train two O-Nets (with and without 

online hard sample mining) and compare their loss curves. To 

make the comparison more directly, we only train the O-Nets 

for the face classification task. All training parameters includ-

ing the network initialization are the same in these two O-Nets. 

To compare them easier, we use fix learning rate. Fig. 3 (a) 

shows the loss curves from two different training ways. It is 

very clear that the hard sample mining is beneficial to perfor-

mance improvement. 

C. The effectiveness of joint detection and alignment 

To evaluate the contribution of joint detection and alignment, 

we evaluate the performances of two different O-Nets (joint 

facial landmarks regression task and do not joint it) on FDDB 

(with the same P-Net and R-Net for fair comparison). We also 

compare the performance of bounding box regression in these 

two O-Nets. Fig. 3 (b) suggests that joint landmarks localiza-

tion task learning is beneficial for both face classification and 

bounding box regression tasks. 

D. Evaluation on face detection 

To evaluate the performance of our face detection method, 

we compare our method against the state-of-the-art methods [1, 

5, 6, 11, 18, 19, 26, 27, 28, 29] in FDDB, and the 

state-of-the-art methods [1, 24, 11] in WIDER FACE. Fig. 4 

(a)-(d) shows that our method consistently outperforms all the 

previous approaches by a large margin in both the benchmarks. 

We also evaluate our approach on some challenge photos
1
. 

E. Evaluation on face alignment 

In this part, we compare the face alignment performance of 

our method against the following methods: RCPR [12], TSPM 

[7], Luxand face SDK [17], ESR [13], CDM [15], SDM [21], 

and TCDCN [22]. In the testing phase, there are 13 images that 

our method fails to detect face. So we crop the central region of 

these 13 images and treat them as the input for O-Net. The 

mean error is measured by the distances between the estimated  

 
1 Examples are showed in http://kpzhang93.github.io/SPL/index.html 

landmarks and the ground truths, and normalized with respect 

to the inter-ocular distance. Fig. 4 (e) shows that our method 

outperforms all the state-of-the-art methods with a margin.  

F. Runtime efficiency 

Given the cascade structure, our method can achieve very fast 

speed in joint face detection and alignment. It takes 16fps on a 

2.60GHz CPU and 99fps on GPU (Nvidia Titan Black). Our 

implementation is currently based on un-optimized MATLAB 

code.  

IV. CONCLUSION 

In this paper, we have proposed a multi-task cascaded CNNs 

based framework for joint face detection and alignment. Ex-

perimental results demonstrate that our methods consistently 

outperform the state-of-the-art methods across several chal-

lenging benchmarks (including FDDB and WIDER FACE 

benchmarks for face detection, and AFLW benchmark for face 

alignment) while keeping real time performance. In the future, 

we will exploit the inherent correlation between face detection 

and other face analysis tasks, to further improve the perfor-

mance. 
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